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NOMENCLATURE 

specifk heat ; 
sum of squares function, equation (3); 
thermal contact conductance ; 
thermal conductivity ; 
thickness of specimen ; 
time ; 
calculated temperature ; 
maximum temperature ; 
minimum temperature ; 
coordinate measured to right from left side of 
specimen 1; 
coordinate measured from interface pointing left; 
measured temperature; 
coordinate measured from interface pointing right. 

Greek symbols 

P9 density ; 

f : 

sensitivity coefficient ; 
dimensionless sensitivity coefficients, equation (7). 

INTRODUCTION 

THE THERMAL contact conductance has been reported to vary 
with time in certain transient cases [l, 21. In these papers 
the analyses were restricted either to thin specimens or 
to cases for which the temperatures at the interface were 
measured. By utilizing an effective method of analysis 
variously called nonlinear estimation, system identifica- 
tion, nonlinear least squares, etc., these restrictions can be 
removed In analytically determining the most efficient 
designs for transient experiment, the sensitivity coefficients 
should be maximized (The sensitivity coefficient is the 
derivative of the temperature with respect to the conduc- 
tance.) 

* Associate Professor, Mechanical Engineering and 
Engineering Research, Michigan State University, East 
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MATHEMATICAL DESCRIPTION 

For the case of two specimens in thermal contact but 
with a finite conductance h at the interface, the heat- 
conduction problem can be. mathematically described in 
part by 

_k aT,(L;,O ,p = h[T,W;,t) - T,(L:, Q-j ax 

= _ k aw:, 9 
lax (2) 

In equation (1) n equals 1 or 2 depending on whether it 
applies to material 1, (0 < x < L,), or material 2, (L, < x < 
L, + L2). The interface is located at x = L,. The effect of 
the finite value of h is not actually one which occurs in a 
plane; it is rather a volume effect and thus, in equations (1) 
and (2) the temperatures near the interface represent some 
sort of average over a plane normal to the x-coordinate. 

The boundary conditions at x = 0 and x = L, + L, can 
be given T’s, given heat fluxes or other known conditions. 

The method proposed herein involves minimizing with 
respect to h the summation 

M+J 

F(h) = 1 C (Tj - Y,j)’ i j=M (3) 

where qj and q, are, respectively, the calculated and 
measured temperatures at (x,,tj). The limits on j define a 
time interval for which a uniform h is to be found; h(t) can 
be considered to be approximated by constant-with-time 
segments or with linear segments, etc. The summation on 
i is over all the yij except those serving as boundary or 
initial conditions. 

The calculated temperatures Tj can be obtained by a 
numerical solution of the problem which would permit 
(if desired) T-variable k and cp (3, 4). A simple method for 
automatically minimizing F is given in (5); see also (6, 7). 
Briefly, one uses the Taylor series approximation 
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where 

Ah-, = h,, + h, (54 

(5b) 

Ifc is ma& equal to 0001 or smaller, the sensitivity coefftcient 
d+, is accurately approximated. The temperatures on the 
right-hand side of (Sb) are calculated using a fmite-dif- 
ference program twice, with h, and then with h,(l + c). 
Using aF/dh = 0 a correction in h is given by, (5), 

‘u+, 

Ah 
C ,FM [yij - TJthJl Qij 

1+1= I J 

.u+, 

. 
(6) 

T ,;* 4 

This iterative procedure begins with an estimated value of 
h, corresponding to I = 0, and continues for increasing 
values of the integer 1 until Ah,, Jh, is less than, say, OGOO5. 
If h is considered to be an unknown function of time and is 
approximated by constant-h segments, the conductances 
are found corresponding to the time intervals between 
t, and t, with M and .l taking on prescribed values. 

INVESTIGA’MON OF SENSITIVITY 
COEFFICIENTS 

It can be observed from (6) that the sensitivity coefficients 
Q,, figure prominently in the solution for h. From (4) note 
that the larger #rj ia the mom sensitive is T, to variations 
in h. This suggests, and is discussed in greater depth in (7), 
that h can be found most accurately when hr#+j/T, is maxi- 
mized. A more convenient dimensionless quantity to 
maximize is 

(7) 

where T,, - T,,, is the maximum temperature difference 
experienced by the specimens for the duration of the 
experiment. 

To facilitate the investigation of $, let material 2 be the 
same as material 1 and let L, = L, = L. A new coordinate 
system Y starting at the interface and directed toward 
specimen 1 is introduced; let .r be the coordinate starting 
at the interface and directed toward specimen 2 To further 
simplify the following discussion, assume that the thermal 
properties are temperature-independent and h is not a 
function of time or T. 

The differential equation and interface relation for 
specimen 1 then are 

kd2T, = PC,2 
aY2 

k  a wo, 0 - = h[T,(O, t) - T,(O, t,], 
ay 

(8) 

The boundary condition at y = L can be either 

or 

_kaw.,t) -= 
ay q,(t). 

The initial condition is 

Ti(Y9 O) = T,iQ. (11) 

The quantities ‘I,, q1 and Tii are arbitrary, but known 
functions. 

Taking the partial derivative of equations (S-11) with 
respect to h and then multiplying by h/(T,,, - Tm,,,) gives 

(12) 

k addo, t) 
- = h[i%(Q 4 - T,(O, 01 ay 

+ hCT,(Q t) - TAO, Ql 
T - Gin 

(13) 
llluL 

a+,(L, t) 
$l(L, t) = 0 or dy = 0 (14) 

?dY, 0) = 0. (15) 

These equations apply for specimen 1, but a similar set for 
specimen 2 is obtained by interchanging 1 and 2 and by 
replacing y with 2. 

Notice that each equation from (12) through (15) is 
homogeneous except (13). Evidently if the temperature 
difference in (13) were zero, the sensitivity coeflicient & 
would be equal to zero for all times If T,(O, t) - T,(O, t) is 
positive, then this term in (13) is similar in effect to a plane 
heat sink in specimen 1 but as a heat source in specimen 2. 
In other words, if there is a heat flow from specimen 1 to 
specimen 2, 6 is negative in specimen 1 and positive in 
specimen 2 According to equation (4) this results in the 
calculated temperatures in specimen 1 being decreased 
when h is increased. 

This analogy with heat sources provides a basis for some 
insight into the behavior of the derivative 4 and hence, 
for the design of optimum experiments For example, one 
learns that (a) 191 is greatest near the interface and decreases 
with distance from the interface, and (b) the larger 
(Tl - T,)/(T,, - T-3 is across the interface, the larger 
141 will be. From (a) one can deduce that thermocouples 
yield more information relative to h when they are located 
“near” the interface rather than “far” from it. In other 
words, a thermocouple positioned “near” the interface 
would usually yield mom accurate values of the conductance 
than a thermocouple located at, say, Y = L. 

While (a) indicatea to some extent, where thermocouples 
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should be located, (b) suggests that certain experiments 
should be more effective than others. It suggests specifically 
regarding (i) the initial temperature distribution and (ii) 
the boundary conditions Two initial distributions could 
be considered: uniform and equal temperatures in both 
specimens and uniform but unequal T’s in the specimens. 
For the case of uniform, equal temperatures, the specimens 
must be heated at either y = L or z = L. Consider, for 
example, the case for which the T at y = L takes a step 
change to T, and the T at z = L is maintained at T&. 
Compare this case with another with the same boundary 
conditions but with the initial temperature in specimen 1 
equal to T,, and the initial T in specimen 2 equal to T&. 
From a knowledge of heat-conduction phenomena one 
can deduce that the temperature-difference across the 
interface of the latter case will always be equal to or greater 
than for the former; hence, the latter is more effective for 
determining the thermal conductance. If any other experi- 
ment were imagined with the same boundary conditions 
at y = Land z = L, but with an arbitrary initial temperature 
distribution satisfying the condition that all the temperatures 
fall between Tm,. and T,, one would still conclude that 
at any given time and position 161 would be larger for the 
experiment mentioned above. 

One should not conclude since the interface temperature 
drop should be maximized that this implies h itself should 
be made small. Since h is a “property”, one cannot arbi- 
trarily make h small. Furthermore, whether h is large or 
small (i.e. hL/k ti 1 or hL/k < l), the same conclusions 
apply although, if possible, (as will be shown in a forth- 
coming paper) it is best to make L < k/2h. In the forth- 
coming paper it will also be demonstrated for realistic 
cases that the percentage error in h is reduced when the 
criterion [$I is maximized. 

Consider now the effect of the temperature boundary 
conditions upon I$. From the boundary conditions on 4 
given by (14), note that a prescribed temperature history 
at y = L results in f#~ being equal to zero at y = L; in 
contrast note that a prescribed heat flux or insulation 
condition at y = L allows 4 to be non-zero. In general 
then, values of 4 near y = L will be greater for a flux condi- 
tion than a prescribed temperature. It is not so obvious, but 
true, that for a substantial time Q tends to be larger for the 
q-condition than the T-condition even near the interface. 
Hence, the desired boundary conditions at y = L and 
z = L are given heat fluxes or the simpler insulation condi- 
tion. (Since a digital computer is to be used, heat transferred 
to the insulating materials at y = L and z = L can be 
included in the analysis by treating the specimens as 
composites.) 

By comparing equations (12) through (15) with a com- 
parable set of equations for specimen 2 one finds that 

i,cv, t) = - T,(Z, t) (16) 

when z = y and for the same t. This applies only when 

specimens 1 and 2 are the same material with T-independent 
properties., have the same thickness, and are subject to the 
same type of boundary condition at both y = L and 
z = L-that is, T or q, but not both. Even so, equation 
(16) applies for a surprisingly wide class of problems. For 
example, the initial temperature distributions are arbitrary, 
as are the time variations of the boundary conditions. 

The case of the time-varying conductance can be in- 
vestigated by extending some of the above ideas. Note only 
the effect of small time intervals for determining a single h. 

Equations (12-15) are valid for finding the first h. Because 
of the diffusion nature of these equations, there is a finite 
time interval cl, before any thermocouple located inside 
the specimens is significantly affected by the interface. 
If the time interval used for determining h is smaller than 
t, then h(t) would be inaccurate and possibly even nu- 
merically unstable. 

In conclusion, a method is given for determining the 
thermal contact conductance as a function of time and some 
points are made relative to an etl%ent design from an 
examination of the sensitivity coefficients. 
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